Actividad: Estructura y reactividad de carbohidratos

Profesora: Amelia Rauter

Departamento de Química e Bioquímica (DQB) e Centro de Química e Bioquímica (CQB),

Faculdade de Ciencias, Universidade de Lisboa (FCUL), Rua Ernesto de Vasconcelos, Campo

Grande,Edificio C8, 5º Piso, 1749-016 Lisboa, Portugal

Ha sido profesora visitante de las siguientes universidades: Université Pierre et Marie Curie

(UPMC – Paris VI), France, October 2013; Polish Academy of Sciences, August 2009, Warshaw,

Poland; Université Paris Sud 11, Orsay, France, June 2009;

Coordinadora: Asunción Barbero Pérez

e-mail de contacto: barbero@qo.uva.es

Clases:

Lunes 31 de mayo: de 17:00 a 19:00 horas en la sala de conferencias del QUIFIMA

Desde el martes 31 de mayo hasta el viernes 3 de junio: de 11:30 a 13:30 horas en la Sala de

Grados I de la Facultad de Ciencias.

Total horas lectivas: 10

Inscripción:

Los alumnos interesados deberán inscribirse en el curso enviando un correo a la coordinadora

antes del martes 31 de abril

Fecha Actividad Número de horas totales

31-05 Antibióticos derivados de azúcares 2

31-05/03- 06 Química de carbohidratos 8

Actividad: Dinámica Molecular y simulación en sistemas químicos

Profesor: Álvaro Cimas Samaniego
Maître de Conférences, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE - UMR8587, Université d'Évry val d'Essonne, Évry (France).
Previamente Investigador en las Universidades de Bristol (Inglaterra), L’Aquila (Italia), Autónoma de Madrid y Porto (Portugal).

Coordinadores: Antonio Largo Cabrerizo y Juan Carlos López Alonso

e-mail de contacto: jclopez@qf.uva.es

Clases: de 11 a 13 horas en las fechas indicadas. Total horas lectivas: 28

Lugar: Seminario de Química Física

Fecha Actividad Número de horas totales

11-4 a 15-4 :Aplicaciones en espectroscopía teórica: 10 horas
18-4 a 22-4 Simulación de sistemas químicos mediante Dinámica Molecular 10 horas
26-4 a 29-4 Seminarios de aplicaciones prácticas 6 horas
La carrera científica en Europa: oportunidades para desarrollar la actividad científica en el extranjero 2 horas.

Profesor: Riccardo Spezia

Chargé de Recherche CNRS premier classe, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE - UMR8587, Université d'Évry val d'Essonne, Évry (France).

La actividad está orientada a proporcionar herramientas metodológicas para la aplicación de la dinámica molecular a diferentes problemas químicos. En primer lugar se presentarán los fundamentos de la dinámica molecular. A continuación se aplicarán a diversas reacciones químicas. Finalmente se considerarán reacciones en disolución y otras aplicaciones en campos como la espectrometría de masas. Durante la primera semana se cubrirán aspectos eminentemente teóricos, mientras que en la segunda semana se realizarán aplicaciones prácticas.

Analysis of broadband rotational spectra.

Prof. Z. Kisiel, Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland.

Broadband microwave spectroscopy is a powerful tool to precisely determine molecular properties of gas-phase molecules. The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. These are easily implemented in the centimeter-wave region, even at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. Other technology trend that impacts molecular rotational spectroscopy is the development of high power solid state sources and multipliers in the millimeter wave/THz regions. These have lead to broadband techniques as FASSST, cascaded multiplication and chirped-pulse mm-wave/THz spectroscopy. FTIR spectroscopy using synchrotron sources is another technique able to provide broadband vibrational-rotational spectra in the FIR and IR region. Together with these methods supersonic jet sources combined with various techniques as laser ablation, fast mixing or electrical discharge nozzles have opened rotational spectroscopy to an enormous variety of molecular systems like solid state biological or inorganic samples, molecular clusters of different sizes or highly reactive molecules. The sensitivity of the method and the ability to extend it to low frequency (2-8 GHz) have significantly   increased   the   size   range   of molecules   and   molecular   clusters   for   structure determination using isotopic substitution to build up the 3D molecular structures atom-by-atom. Examples are the determination of the structures of water clusters with up to 15 water molecules in which Prof. Kisiel has actively collaborated. Despite this traditional application of rotational spectroscopy new applications are now possible like those in the area of Chemical Kinetics where dynamic rotational spectroscopy is used to measure the rates of unimolecular isomerization reactions in highly excited molecules prepared by pulsed infrared laser excitation. This method provides also a direct digital   technique   for   analytical   chemistry   of   room-temperature   gases   based   on   molecular rotational spectroscopy. These high-throughput methods can analyze complex sample mixtures with unmatched chemical selectivity and short analysis times. Additionally, rotational spectroscopy is a key technique in the field of Radio Astronomy and Astrochemistry, since the use of new instruments such as ALMA allows the observation of the mmw and THz spectra of molecular species in interstellar space with unmatched sensitivity and resolution. The identification of new species is concomitant with the laboratory studies and the assignment of new spectra of parent and isotopic species as well as excited vibrational species.
    The deluge of experimental spectroscopic data resulting from the new techniques is leading to a situation where only a relatively small proportion of the time spent on a given molecular project is devoted to acquiring the spectrum.  The most time consuming part is data analysis since the spectra will usually be rather complex overlaps of rotational transitions in different vibrational states and different molecular (or intermolecular) species.  In an effort to deal with these problems a combination of several techniques of analyzing and fitting the recorded spectra has been developed.  The proposed short course will cover the various aspects of the advances in instrumental techniques, and especially in the methods of deriving useful molecular information from the spectra.

     Prof. Zbigniew Kisiel has a extensive experience, arising from many years in the field of rotational spectroscopy in the centimeter and millimeter-wave regions, resulting in  many high quality works in a variety of subjects in international journals as important  as Science. He has also contributed to the field with a number of computational packages extremely useful for the purpose of analyzing and interpreting the high resolution molecular rotation spectra. These packages which can be considered as cutting edge applications for the analysis of high resolution spectra are collected and maintained by prof. Kisiel on the web page of Institute of Physics of the Polish Academy of Sciences ( http://www.ifpan.edu.pl/~kisiel/prospe.htm ). In the proposed course Prof. Kisiel will show to our students how to use these packages for the always difficult work of assignment and analysis of broadband rotational spectra as well as how to extract the corresponding structural and vibrational information. Such information serves as a benchmarks for calculations and development of modern high level quantum chemistry packages.

Activities

The proposed short course will cover the various aspects of the advances in instrumental techniques, and especially in the methods of deriving useful molecular information from the spectra. It is expected that the lectures (supported by practical sessions in computer lab) will cover the following topics:

The sources of broadband, rotationally resolved spectra

The AABS package for "Assignment and Analysis of Broadband Spectra"

The spectrum processing and Loomis-Wood features of the AABS package

The software packages for fitting spectra (ASFIT/ASROT, SPFIT/SPCAT, ERHAM, RAM36 etc.)

The STRFIT program for fitting molecular geometries

Example 1: Broadband spectroscopy of acrylonitrile

Example 2: Chirped pulse spectroscopy of water clusters

Example 3: Dealing with coupled vibrational states (cyanamide and ClONO2)

Over all the program will implement a “two-week/10 hours per week” tutoring activities schedule following the following scheme:

Week 1 – 08/05/2017 – 14/05/2017

Monday 8/5/2017 (1 hour lecture).- Introduction to the objectives of the program. An overview of the sources of broadband rotational spectra.

Thuesday 9/5/2017 (1 hour lecture) .- An introduction to the fundamental aspects of rotational spectroscopy. The prediction and analysis of rotational spectra. Overview of the software packages for fitting spectra (ASFIT/ASROT, SPFIT/SPCAT, ERHAM, RAM36 etc.)

Wednesday 10/5/2017 (2 hours computer lab). The AABS Package for assignment and analysis of broadband spectra: presentation and Working examples.

Thursday 11/5/2017 (2 hours computer lab). The spectrum processing and Loomis-Wood features of the AABS package. Working examples.

Friday 12/5/2017 (2 hours computer lab). Fitting spectra the examples spectra using different software packages (ASFIT/ASROT, SPFIT/SPCAT)

Week 2 – 15/05/2017 – 19/05/2017

Monday 15/5/2017 (1 hour lecture).- The determination of molecular structures and the effects of vibration. The different experimental sources of structural data and the corresponding structures. The equilibrium structures from quantum chemistry computational methods

Thuesday 16/5/2017 (2 hours computer lab) .-  The determination of molecular structure from isotopic substitution. The STRFIT Package, working examples.

Wednesday 17/5/2017 (1 hour lecture). Large amplitude vibrations, tunneling motions and coupling of vibrational states.

Thursday 18/5/2017 (2 hours computer lab). Dealing with large amplitude vibrations: working of spectra of molecules internal rotations.

Friday 19/5/2017 (2 hours computer lab). Fitting spectra of coupled vibrational states. Working with examples.